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Many heating, ventilation, air conditioning, and refrigeration systems operate using on/off controllers. A
high and a low set point are selected above and below the desired temperature to command the refrig-
eration cycle to turn on or off when those temperatures are reached. In this study, exponential temper-
ature correlations are used in a gray-box approach to provide information about the estimated mean
temperature, average power consumption, and number of compressor starts per hour. Based on the gov-
erning equations and the heat balance of the system, a set of formulations is developed as a new analyt-
ical tool for the design of set points. It is discussed that for any specific application, the set point values
can be properly selected to minimize the overall energy consumption subject to the design constraints. It
is shown through an experimental study that the selection of the set points can affect the overall energy
consumption by up to 49% for the same desired temperature. It is also shown that there is a further
opportunity for increasing the energy efficiency by 6.6% using different high and low set point hysteresis
values. The developed model can be used for designing and analyzing new systems. It can also be used for
retrofitting existing units and achieving the highest energy efficiency subject to the design constraints.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Half of the total energy used in buildings and 20% of the total
national energy used in European and American countries is con-
sumed by Heating, Ventilation, Air Conditioning, and
Refrigeration (HVAC–R) systems [1]. HVAC–R energy consumption
can exceed half of the total energy usage of a building located in
tropical climates [2]. Furthermore, industrial refrigeration systems
consume a substantial amount of energy. Supermarket refrigera-
tion systems, for instance, may use up to 80% of the total energy
consumed in the supermarket [3].

Moreover, Air Conditioning (AC) is a significant energy consum-
ing unit in vehicles [4]. For a typical vehicle under peak load, the
AC energy usage outweighs the energy loss to aerodynamic drag,
rolling resistance, and driveline losses, combined [5]. AC can
reduce the fuel economy of mid-size vehicles by more than 20%
and it can also increase vehicle NOx and CO emissions by approx-
imately 80% and 70%, respectively [6]. Around 7 billion gallons of
fuel are consumed annually by the AC systems of light-duty vehi-
cles in the United States [7]. Hence, reduction of fuel consumption
and tailpipe emissions are two crucial goals for the auto industry
that can be achieved by more efficient designs of mobile AC
systems.

Controller design is a critical aspect of HVAC–R systems. Proper
selection and design of the controller directly affects the overall
energy consumption and thermal comfort. Air conditioning and
refrigeration systems are often controlled by feedback systems that
receive input signals from a temperature sensor such as a thermo-
couple installed inside the conditioned space. The controller com-
pares the measured temperature to the desired (set point)
temperature, and provides an output to the control element. The
control element of the refrigeration system can be the compressor,
the evaporator fan(s), or the condenser fan(s). The controller is an
integral part of the HVAC–R system, thus the entire system should
be analyzed to select a proper and efficient controller.

The design methodology for HVAC–R controllers can be catego-
rized with respect to their reliance on real-time data measure-
ments. White-box (purely law-driven), black-box (purely
data-driven), and gray-box (combination of the two) modeling
approaches are among the methods proposed in the literature
[8]. White-box methods are purely based on predetermined phys-
ical laws and are unaware of the real-time operation of the system.
Black-box methods are learning algorithms that are often designed
as generic tools for intelligent control systems regardless of the
actual application. Gray-box approaches offer a mix of the two.
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Nomenclature

c specific heat ðJ=kg �CÞ
c1 parameter of the temperature correlation ð�CÞ
c2 parameter of the temperature correlation ð�CÞ
c3 parameter of the temperature correlation ðsÞ
h convection heat transfer coefficient ðW=m2 �CÞ
H representative parameter of heat generation ðWÞ
m mass ðkgÞ
_m mass flow rate ðkg=sÞ

M representative parameter of thermal inertia ðJ=�CÞ
n number of compressor starts per hour ð1=hÞ
P effective compressor power consumption ðWÞ
Pcomp approximate compressor power consumption when on

ðWÞ
_Q heat transfer rate ðWÞ

R2 coefficient of determination
S surface area ðm2Þ
t time ðsÞ
T temperature ð�CÞ
U representative parameter of heat transfer ðW=�CÞ

Subscripts and superscripts
0 initial value at the beginning of a process
a room air
c calculated value based on piecewise exponential tem-

perature correlations
D temperature-decreasing process
g internal heat generation
H high set point
HVAC HVAC source
i wall number
I temperature-increasing process
L low set point
m mean value over a temperature swing
o outside air
s surface
v ventilation and infiltration
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In gray-box methods, the governing equations of the specific con-
trol problem is incorporated in the design to some extent, while
available operation data are also utilized to complement the
approach with a degree of real-time intelligence. In the following
section, an overview of the existing HVAC–R control methods is
provided.

1.1. HVAC–R controllers

A wide spectrum of controller types is available for HVAC–R
applications. Classic controllers include: on/off, proportional, and
PID controllers. Although more sophisticated controllers are being
made available, the industry often delays adopting the new meth-
ods due to the associated cost, complexity, and lack of incentives. It
is therefore important to consider approaches that can be adopted
rather quickly with utmost ease and tolerable cost.

On/off controllers are capable of switching the system on and
off based on a comparison between the measured temperature
and the desired set point. On the other hand, proportional and
PID controllers are meant for systems that have the capability of
varying the provided heating/cooling power. For instance, a PID
controller not only switches a heater on or off, it can also control
the amount of heating energy input to the room. Therefore, propor-
tional or PID controllers are generally more desirable for
variable-capacity systems. One issue with adopting a conventional
PID controller is the selection of its coefficients, which is often
determined through measurements. Wemhoff [9] proposed a sim-
ple calibration procedure for successive optimization of the pro-
portional, integral, and derivative coefficients to reduce energy
consumption. Similar optimization concepts are applicable to the
set points in on/off controllers [10]. Due to the higher initial cost
associated with variable-speed compressors and fans, on/off con-
trol and constant capacity components are more common in
HVAC–R applications.

Artificial intelligence approaches for HVAC–R control include
neural networks, genetic algorithms, and fuzzy logic which suggest
new frontiers of HVAC–R control beyond the classic methods.
Mirinejad et al. [11] recently conducted a thorough review of intel-
ligent control techniques used in HVAC–R systems.

Neural networks are being widely used to establish load predic-
tion algorithms. Li et al. [12] presented four modeling techniques
for hourly prediction of thermal loads based on neural networks.
Kashiwagi and Tobi [13] also proposed a neural network algorithm
for thermal load prediction. Ben-Nakhi and Mahmoud [14] used
general regression neural networks and concluded that a properly
designed neural network is a strong tool for optimizing thermal
energy storage in buildings. Yao et al. [15] used a case study to
show that a combined forecasting model based on a combination
of neural networks and a few other methods is promising for pre-
dicting the hourly loads in buildings. Solmaz et al. [16] used the
same concept of neural networks to predict the hourly cooling load
for vehicle cabins.

Fuzzy logic and genetic algorithms are also used for developing
predictor controllers. Sousa et al. [17] developed a fuzzy controller
to be incorporated as a predictor in a nonlinear model-based pre-
dictive controller. Wang and Xu [18] used genetic algorithms to
estimate the parameters of a building thermal network model
using the operation data collected from site monitoring. They fur-
ther combined a Resistance–Capacitance (RC) model of the build-
ing envelope with a data-driven approach where their RC
parameters were corrected using real-time measurements [19].

The results of conventional load calculation methods can be
improved by incorporating new mathematical algorithms that act
on simple real-time measurements. Afram and Janabi-Sharifi [20]
showed that improved load estimations can lead to the design
and testing of more advanced controllers. It is shown that intelli-
gent control based on thermal load prediction can maintain air
quality while minimizing energy consumption [21]. By predicting
thermal loads in real-time, controllers are not only capable of pro-
viding thermal comfort, but also adjusting the system operation to
cope with upcoming conditions in an efficient manner [22].

Table 1 summarizes various characteristics of the available con-
trol methods for HVAC–R systems. These approaches cover a range
including classic controllers to newer intelligent methods. In
Table 1, ‘Simplicity’ refers to the ease of implementation of each
method. ‘Computational Intensity’ determines the relative amount
of on-site computational resources required for the algorithm to
perform. ‘Cost’ is an indication of the relative cost of the method
which is in relation to how commercially-available the method is,
also indicated by ‘Commercial Availability’. Different methods
require different extents of system data such as the room thermal
characteristics and the refrigeration cycle performance
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Fig. 1. Demonstration of a typical temperature pattern resulting from an HVAC–R
on/off control action.

Table 1
A summary of the characteristics of the available controller types for HVAC–R systems.

On/off controller PID controller Neural network Fuzzy logic Genetic algorithm Real-time load estimation

Sample reference [10] [9] [12] [17] [18] [20]
Simplicity High Medium Low Low Low Medium
Computational intensity Low Low High Medium High Medium
Cost Low Low High High High Medium
Commercial availability High High Low Low Low Low
System data requirement Low Medium High Medium High High
Prediction and adaptability Low Medium High Medium High High
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information. The extent of such data required by each method is
shown under ‘System Data Requirement’ in Table 1. Finally,
‘Prediction and Adaptability’ suggests how much every method is
able to predict the upcoming thermal conditions and adapt the
refrigeration cycle performance to the new scenarios.

A major drawback of the intelligent approaches is that they
often tend to be mathematically complex and their implementa-
tion can be commercially unattractive in a range of regular appli-
cations. The sensors and computational resources required for
the proper implementation of such intelligent methods may be
unavailable for inexpensive systems. Furthermore, the usage of
intelligent methods often presumes the availability of a
variable-load refrigeration system that has variable-speed fans
and compressor. Since many existing refrigeration systems are
constant-load and only have on/off controllers installed, changing
the set point values of the on/off controller as a means of improv-
ing energy efficiency can be a relatively effortless approach.

The output of an on/off controller is either on or off, with no
middle state. To prevent damage to contactors and valves, an
on/off ‘hysteresis’ is added to the controller operation [23]. This
hysteresis causes the controller to wait for the temperature to sur-
pass the set point by a certain amount before the output turns off
or on again. As a result, on/off controllers practically have a pair of
set points that are called the ‘high set point’ and the ‘low set point’.
Thus, the on/off controller of a cooling system keeps the system on
until the temperature reaches the low set point. When this occurs,
the system is switched off until the temperature rises back up to
the high set point level, when it is switched on again. On/off hys-
teresis prevents the output from making fast, continual switches.
With on/off controllers, a precise control of temperature is not
achieved. However, the temperature keeps cycling or ‘swinging’
around the desired set point, resulting in an average temperature
close to the desired set point.

Several researches have studied the optimization of on/off con-
trollers. Chinnakani et al. [24] argued that a disadvantage of fixed
gain PID control is that its performance can be poor under varying
load conditions, so they developed an ‘intelligent on/off controller’
that takes into account sensor delays and room inertia. However,
they assumed linear functionality for determining the slope of
the temperature–time curves. Although the linear assumption is
acceptable, assuming exponential functionality can be more accu-
rate considering the form of the governing heat transfer equations.
Li and Alleyne [10] presented an optimal compressor on/off control
algorithm with a relay feedback loop. They developed a generic
cost function involving temperature variation from the set-point,
power consumption, and compressor on/off cycling frequency for
minimization. The optimal control scheme was tested on a refrig-
eration system to demonstrate the potential of the optimal on/off
control for temperature regulation, component wear reduction,
and fuel consumption saving. They discussed the importance of
the temperature swing periods in the action of on/off controllers
and proposed a method for optimizing the high and low set points
to minimize the cost function. However, they assumed that the
temperature swing time periods have polynomial correlations with
the set points, and calculated those parameters using simulation
results rather than experiments. In the present study, it is proposed
that exponential temperature correlations be used for the room
thermal response. Moreover, the proposed set point optimization
is based on experimental measurements without the necessity of
further simulations.

In this study, the effect of hysteresis on the overall energy con-
sumption is considered for the design of on/off HVAC–R con-
trollers. It is shown through experiments that the average
temperature, average power consumption, and the number of
compressor starts per hour can be estimated using exponential
correlations of the temperature data. A new mathematical model
is developed based on the basic equations of the heat balance
method. Current practice in the HVAC–R industry involves experi-
mental tuning of the hysteresis value to maintain the desired
threshold. However, in this study, formulations are proposed for
properly selecting the high and low set point values in order to
achieve the highest energy efficiency subject to the design con-
straints. The proposed approach is directly usable for the design
of set points in all HVAC–R systems. In the following sections,
the model development is described, followed by experimental
results showing the energy-saving opportunities within the con-
straints of acceptable temperature deviation and number of com-
pressor starts per hour.
2. Model development

An on/off controller of an HVAC–R system keeps the tempera-
ture swinging within a narrow range of temperatures called the



Table 2
Physical interpretation of the c-parameters in the temperature correlation formula.

Parameter Unit Physical interpretation

c1I ð�CÞ Maximum steady-state room temperature reached in the
current conditions if the cooling system is always off

c1D ð�CÞ Minimum steady-state room temperature reached in the
current conditions if the cooling system is always on

c2I ð�CÞ Difference between c1I and the low temperature set point
(TL � c1I). c2I is negative

c2D ð�CÞ Difference between c1D and the high temperature set
point (TH � c1D). c2D is positive

c3I ðsÞ Time constant of the exponential temperature correlation
for an increasing process, i.e., the time required for the
room temperature to cover 63% of its total increase and
reach Ta ¼ c1I þ 0:37c2I where c2I is negative

c3D ðsÞ Time constant of the exponential temperature correlation
for a decreasing process, i.e., the time required for the
room temperature to cover 63% of its total decrease and
reach Ta ¼ c1D þ 0:37c2D where c2D is positive
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high set point TH and the low set point TL. Fig. 1 shows an example
of a temperature swing in an air-conditioned system. In the exam-
ple shown in Fig. 1, in order to maintain the temperature at 26 �C,
the high and low set points are selected to be TH ¼ 27:8 �C and
TL ¼ 24:2 �C, respectively. Therefore, starting from a low tempera-
ture, the air conditioning system is off and the room gains heat.
This phenomenon results in the room temperature to increase, cre-
ating a temperature trend called an ‘increasing process’. When the
temperature reaches TH , i.e., the maximum allowable temperature,
the AC system is turned on and the temperature begins to decrease.
There is some lag in the process and a temperature overshoot is
expected due to the thermal inertia of the room. This temperature
overshoot is visible in Fig. 1 at the end of the increasing process
denoted by time tI . Afterwards, the refrigeration cycle works to
pull down the room temperature during a period called the ‘de-
creasing process’ which lasts for time tD. These processes occur
consecutively in air conditioned and refrigerated spaces. Every
two consecutive processes are called a ‘temperature swing’.
Useful information can be extracted from the study of temperature
swings in any HVAC–R application [25].

The aim of the present model is to adopt a gray-box approach
that will provide formulas for calculating energy-efficient set point
values in HVAC–R on/off controllers. To combine the heat transfer
equations with real-time data, the heat balance equation of a room
envelop surrounded by walls numbered by i can be written as [26]:

maca
dTa

dt
¼
X

i

SihiðTsi � TaÞ þ _mvcaðTo � TaÞ þ _Q g þ _Q HVAC ð1Þ

where
Ta is the homogeneous room air temperature and t is time;
maca

dTa
dt is the rate of increase in the temperature of room air of

mass ma and specific heat ca;P
iSihiðTsi � TaÞ is the convective heat transfer rate from sur-

faces Si, with inside convection coefficients hi, and inside sur-
face temperatures Tsi;
_mvcaðTo � TaÞ is the heat transfer rate due to air mass flow rate
_mv from outside air temperature To by ventilation and

infiltration;
_Qg is the convective heat flow gained from internal loads;
_QHVAC is the heat flow to or from the HVAC system. It also

includes any latent heat transfer due to condensation or
evaporation.

Eq. (1) can be viewed as a differential equation with respect to
the variable Ta. Rearranging Eq. (1), the following equation is
achieved:

M
dTa

dt
¼ �UTa þ H ð2Þ

where M, U, and H are positive values containing all the parameters
included in Eq. (1). In general, these coefficients are also functions
of Ta. M is a function of the air mass, the air specific heat, and the
deep thermal mass of the objects inside the room. U is a function
of the wall convective coefficients and the ventilation flow rate. H
can also have a complicated dependency on the heat gain, HVAC
load, outside temperature, and ventilation temperature.

The physical parameters included in M, U, and H are generally
time-dependent. It is often necessary to gather information about
the ambient conditions, the material properties, and the room’s
geometrical shape for estimating such parameters. However, when
the room temperature is swinging between the set points, it has a
relatively constant value. Therefore, most parameters such as the
ambient temperature and ventilation rate have negligible variation
and can be assumed constant. Although variations in the radiation
load can occur in the room, these changes occur gradually
compared to the small time span of a temperature swing.
Therefore, it is reasonable to assume that all the parameters in
Eq. (2) are constant during an instance of temperature swing.
Any variation in the room conditions may still occur from one
swing to the next, but as long as the swinging pattern is main-
tained, every parameter in Eq. (2) is assumed constant during a
swing instance. Thus, the solution to the differential equation of
Eq. (2) has the following exponential form:

Tac ¼ c1 þ c2 exp � t � t0

c3

� �
ð3Þ

where c1, c2, and c3 are:

c1 ¼
H
U

ð4Þ

c2 ¼ Ta0 �
H
U

ð5Þ

c3 ¼
M
U

ð6Þ

and t0 and Ta0 are the initial time and temperature of the specific
process under consideration. Tac is the correlated room air temper-
ature. Eq. (3) is an exponential curve fit of the temperature variation
during an increasing or decreasing process. The specific correlation
for an increasing process has the following form:

Tac ¼ c1I þ c2I exp � t � t0

c3I

� �
ð7Þ

whereas the temperature correlation of a decreasing process has
the following form:

Tac ¼ c1D þ c2D exp � t � t0

c3D

� �
ð8Þ

The subscript ‘I’ denotes the parameters pertaining to an
increasing process and ‘D’ denotes the parameters of a decreasing
process. Table 2 shows the physical interpretation of the correla-
tions parameters.

The values of the c-parameters in Table 2 are unknown; they
can be acquired through measurements. If the temperature in a
room is recorded, Eqs. (7) and (8) can be used to fit exponential
curves to the temperature values. After fitting exponential curves
to the temperature data, the values of the c-parameters are found
and they can be further used to assist the design and improvement
of the controller set points. For every increasing or decreasing pro-
cess, an exponential correlation can be found and a new set of
c-parameters can be calculated.
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An important aspect of the temperature swing patterns is the
time span of each process. Rearranging Eq. (3) and using Eqs. (4)
and (5), the time required for the room to reach temperature Ta

through a process starting from t ¼ t0 and Ta ¼ Ta0 is:

t � t0 ¼ c3 ln
Ta0 � c1

Ta � c1

� �
ð9Þ

In ideal conditions, every increasing process starts from Ta ¼ TL

and ends at Ta ¼ TH , while every decreasing process starts from
Ta ¼ TH and ends at Ta ¼ TL. Therefore, for an increasing process,
the total time is:

tI ¼ c3I ln
TL � c1I

TH � c1I

� �
ð10Þ

and for a decreasing process:

tD ¼ c3D ln
TH � c1D

TL � c1D

� �
ð11Þ

where TL and TH are the low and high set points.
The temperature pattern during the entire operation of the sys-

tem is merely a repetition of the swinging pattern. Therefore, the
average swing temperature is equal to the overall average temper-
ature, as long as the swinging pattern is maintained. As such, the
average swing temperature is an important design objective. The
average swing temperature is calculated by:

Tmc ¼
R

tI
Tadt þ

R
tD

Tadt

tI þ tD
ð12Þ

where Tmc is the mean temperature calculated based on the temper-
ature correlations. A temperature swing consists of an increasing
process followed by a consecutive decreasing process. As such, for
an entire temperature swing, using the correlations of Eqs. (7)
and (8) for Tac , and the definitions of Eqs. (10) and (11) for tI and
tD, the following formulation is achieved:

Tmc ¼
1

tI þ tD
c1ItI þ c1DtD þ c2Ic3I þ c2Dc3D � c2Ic3I exp � tI

c3I

� ��

�c2Dc3D exp � tD

c3D

� ��
ð13Þ

It is required to keep the average temperature at the desired
level via proper selection of the set points. Therefore, given either
TL or TH , the other quantity can be found by implicitly solving Eq.
(13) with tI and tD from Eqs. (10) and (11) so that the requirement
for Tmc is met.

Another important parameter for the design of set point hys-
teresis is the overall power consumption. The compressor of the
refrigeration cycle is off during increasing processes, and it is on
during decreasing processes. When the compressor is on, its
amount of power consumption depends on several factors such
as air temperature, ambient temperature, and refrigerant pressure.
However, within the narrow range of the set points, the compres-
sor power can be assumed constant [25]. Therefore, the average
compressor energy consumption per unit time is directly propor-
tional to the amount of time that it is on. Assuming that the com-
pressor consumes the power Pcomp when it is on, the average power
consumption over a swing period is calculated as:

Pmc ¼
tD

tI þ tD
Pcomp ð14Þ

where Pmc is the average power consumption calculated based on
the temperature correlations. Thus, proper selection of the set point
levels directly affects the overall energy consumption through
changing tI and tD in Eq. (14).
The number of compressor starts per hour is another important
parameter in the design of refrigeration systems. Having found the
process times tI and tD, the following relationship holds:

nc ¼
3600
tI þ tD

ð15Þ

where nc is the estimated number of compressor starts per
hour. Excessive compressor starts can reduce the lifetime of
the compressor due to fatigue. It can also damage other compo-
nents of the system including the valves and contactors. The
increased current draw that happens at every new start also
increases the total power consumption. A limit is often set by
the manufacturers on the maximum allowable number of com-
pressor starts per hour. As such, Eq. (15) can be used to design
the set points subject to the constraint on the maximum allow-
able nc .

The set of Eqs. (13)–(15) is crucial to the proposed method for
selection of on/off set points. In the following section, a design
strategy is described for using the present model as a tool for
selecting the set points.

2.1. Design strategy

The optimization problem for selecting the on/off set points is
formulated as minimizing the overall energy consumption subject
to the following constraints:

� Minimum error between the average temperature and the
desired temperature.
� Minimum temperature deviation from the desired temperature.
� Minimum number of compressor starts per hour.

The above constraints create competing trends for the selec-
tion of set points. Of course, there are specific obligations and
preferences in every design case. For instance, minimizing the
temperature deviation from the desired level may be critical
in certain applications such as in refrigerated transportation of
food products. In such a case, a higher number of compressor
starts per hour may be acceptable as a sacrifice for selecting a
narrow set point range. The present approach offers a design
tool that can be flexibly used according to the needs of every
specific engineering case.

The procedure for solving the optimization problem is as
follows:

(1) Find the c-parameters by fitting the correlations of Eqs. (7)
and (8) on temperature measurements.

(2) Decide upon the maximum allowable temperature deviation
from the desired temperature.

(3) Decide upon the maximum allowable number of compressor
starts per hour.

(4) Solve Eqs. (13) and (15) simultaneously for tI and tD subject
to:

� Tmc = Desired temperature.
� nc = Maximum allowable number of compressor starts

per hour.

(5) Solve Eqs. (10) and (11) simultaneously for the minimum

allowable TH .
(6) Find the maximum allowable TH based on the maximum

allowable temperature deviation.
(7) Select the maximum suitable TH within the range specified

by steps 5 and 6.
(8) Find TL for the selected TH by solving Eq. (13) using Eqs. (10)

and (11) for tI and tD, subject to:

� Tmc = Desired temperature.
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(9) Estimate the optimized average power consumption using
Eq. (14).

(10) Estimate the number of compressor starts per hour using Eq.
(15).

In the following section, the model is validated by an experiment
and the potentials for improving the overall energy efficiency are
investigated.
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3. Results and discussion

To test and verify the proposed model, a custom-designed
testbed is built as shown in Fig. 2. The testbed is built out of wood,
plastic, and glass, and is adjustable for testing a range of room
dimensions and angles. There are two openings on the front and
two on the rear walls of the chamber, as shown in Fig. 2b. Two
of the openings are blocked and the other two are connected to
the evaporator of an AC system.

Four T-type thermocouples (5SRTC-TT-T-30-36, Omega
Engineering Inc., Laval, QC, Canada) are installed inside the cham-
ber to measure the air temperature at several arbitrary locations.
The thermocouples have an uncertainty of �1:0 �C and are con-
nected to a data acquisition system (NI 9214DAQ, National
Instruments Canada, Vaudreuil-Dorion, QC, Canada) for collecting
the temperature values at a sampling rate of 1 Hz. However, one
temperature value is sufficient to represent the chamber bulk tem-
perature. The measured values of the thermocouples show a max-
imum standard deviation of 0:3 �C throughout the experiment.
Therefore, it is ensured that the air temperature is uniform and
the value of one of the thermocouples can represent the chamber
bulk temperature with an acceptable deviation. Moreover, the
standard deviation of 0:3 �C among the measurements ensures that
the accuracy of �1:0 �C is compensated by comparing the data
from the four thermocouples. Therefore, the measurements from
one of the thermocouples are used as the chamber bulk air temper-
ature in the model.

The chamber has the following overall dimensions: 150 cm
high, 75 cm wide, 160 cm long. An electrical heater is placed inside
the chamber at an arbitrary location. The heater is equipped with a
fan to circulate air inside the chamber. The heater and its fan gen-
erate a total internal heat gain of _Qg ¼ 641 W. The instantaneous
compressor power consumption varies between 490 W and
520 W when it is on. The amounts of power provided to the heater
and compressor are controlled and monitored by two similar pro-
grammable DC power supplies (62012P-80-60, Chroma Systems
Solutions Inc., Orange County, CA, US). According to the manufac-
turer datasheet, the maximum error of voltage and current mea-
surements in the DC power supplies are 0:05%þ 0:05% F:S: and
0:1%þ 0:1% F:S:, respectively. F:S: is the full scale value of each
quantity, i.e., the maximum value deliverable by the equipment.
The power is calculated in the power supplies by multiplying the
voltage and current. Therefore, an uncertainty analysis of the
experiments results in a maximum uncertainty of 0.4% for the
power measurements.

The on/off controller switches the compressor on or off at the
set point levels. However, the evaporator and condenser fans are
always on during the tests. Every temperature swing consists of
an increasing process, during which the compressor is off, followed
by a decreasing process, during which the compressor is on. As dis-
cussed in the model development section, the compressor power
can be assumed constant when it is operating within the narrow
range of the set points. Therefore, according to the measurements,
an average value of Pcomp ¼ 497:7 W is considered as the compres-
sor power consumption.
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3.1. Model validation

In a test designed for model validation, the high and low set
points are varied every half an hour during the regular action of
the refrigeration cycle connected to the chamber. An arbitrary
value of 26 �C is selected as the desired temperature. A symmetric
on/off set point hysteresis is selected, and its value is varied from
�1:0 �C to �1:8 �C with increments of 0:2 �C at every 30 min. As
such, the high set point varies from TH ¼ 27:0 �C up to
TH ¼ 27:8 �C while the low set point varies from TL ¼ 25:0 �C down
to TL ¼ 24:2 �C during an overall period of 150 min. The set points
are applied by the data acquisition system based on the tempera-
ture feedback. Therefore, the measured temperature is compared
with the selected set points and control commands are sent to
the compressor accordingly.

Fig. 3 shows the temperature results throughout the 150 min
(9000 s) of the refrigeration system’s operation. Ta shows the air
temperature as measured in the chamber. TH and TL are the high
and low set points, respectively. At the bottom of Fig. 3, a
zoomed-in view shows a single temperature swing with curve fits
for Tac using Eqs. (7) and (8). After identifying all the temperature
swings, curve fits are applied to the increasing and decreasing pro-
cesses of every swing instance separately. The minimum coeffi-
cient of determination for all the correlations is R2 ¼ 0:98.

In Fig. 3 it can be seen that the air temperature surpasses the
high set point by up to 1 �C before it is pulled back down by the ini-
tiation of the cooling cycle’s operation. There is also an overshoot
at the low set point, but it is not as dramatic because the heat gains
quickly increase the temperature once the cooling cycle is turned
off. The surpassing of the air temperature beyond the set points
is due to the chamber’s thermal inertia as well as the residual cool-
ing effect available in the evaporator after the compressor is turned
off. As such, the set points create an approximate window of action
for temperature control. The overshoot is less noticeable for larger
hysteresis values, i.e., to the right of Fig. 3. The temperature over-
shoot is often unavoidable in typical HVAC–R systems equipped
with on/off controllers.

In the next step, the c-parameters for each temperature swing
are found by applying the curve fits of Eqs. (7) and (8). The increas-
ing time tI and the decreasing time tD are then calculated using Eqs.
(10) and (11). The mean temperature and power consumption are
calculated based on Eqs. (13) and (14). Since the average tempera-
ture and power calculated in this method are found based on the
correlations, the subscript ‘c’ is added to distinguish between the
measured data and the calculated values.

Fig. 4 shows a comparison between the calculated average tem-
perature Tmc and the measured average temperature Tm. The calcu-
lated average power Pmc is also compared with the measured
average power Pm in Fig. 4. The measured mean temperature Tm

is found by taking the average of the air temperature Ta over every
swing period. The average power Pm is also calculated by taking the
average of the measured compressor power over every tempera-
ture swing. Since the c-parameters correspond to the entire period
of every temperature swing separately, the calculations are also
performed for every swing. Therefore, Tm, Tmc , Pm, and Pmc are
shown as discreet points at every swing occurrence. The maximum
relative error for the calculation of mean temperature is 1%. The
mean power consumption is calculated with a maximum relative
error of 16%.

It is observed in Fig. 4 that, although the set points are symmet-
rically selected around the desired temperature of 26 �C, the mea-
sured average power can vary from Pm ¼ 217 W up to Pm ¼ 323 W.
Therefore, it is shown in this experiment that improper selection of
a symmetric set point hysteresis can remarkably affect the overall
energy consumption. In this case, only selecting a hysteresis value
of �1:8 �C instead of �1:0 �C increases the average power con-
sumption by 49%. Moreover, the measured mean temperature is
below the desired temperature of 26 �C in the larger hysteresis
case. These issues are indications of the necessity for proper selec-
tion of set points.

As observed in Fig. 4, for higher values of symmetric hysteresis,
the compressor needs to stay on during a larger portion of the tem-
perature swings, i.e., tD increases more dramatically than tI for
higher hysteresis values. As a consequence, the average tempera-
ture decreases. In this test, although the desired temperature is
set at 26:0 �C, mean temperatures as low as 25:5 �C are achieved
for a hysteresis of �1:8 �C. This proves that with selecting an
improper pair of set points, the actual value of average tempera-
ture can be different from the desired temperature. In such cases,
excessive cooling or heating is provided to the system which
may not be necessary. Furthermore, high hysteresis values result
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in excessive temperature deviations from the desired value which
may not be acceptable in certain applications.

Fig. 4 also shows the mean compressor power. As described
above, the overall energy consumption increases with increasing
symmetric hysteresis. Thus, when symmetric set points are to be
selected around the desired temperature, it is preferable to choose
narrower ones to avoid excessive temperature deviation and
energy consumption. On the other hand, low hysteresis values
result in high numbers of compressor starts per hour. Therefore,
to avoid excessive compressor starts, the set points should not be
too narrow.

Fig. 5 shows the estimated number of compressor starts per
hour calculated by Eq. (15). As expected, increasing the gap
between TL and TH results in decreasing nc which is calculated
based on the exponential temperature correlations. During every
half-hour period when TL and TH are constant, the nc values of dif-
ferent swing instances are almost equal to each other. But at the
times when TH and TL change, the value of nc also changes accord-
ingly. Fig. 5 shows the average nc calculated over the entire
half-hour period of every set point pair.

The validated model can be used as a tool for set point design in
any type of HVAC–R system equipped with an on/off controller.
The proposed design strategy is utilized in the following section
as a basis for energy-efficient design of set points in the present
experiment.
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3.2. Set point design

In this section, the design strategy outlined in the model devel-
opment section is followed to select the set points for the experi-
mental setup described above. It is necessary to find the
c-parameters of the exponential correlations (step 1). Adopting a
gray-box approach for an existing system, the c-parameters can
be found by performing an experiment in which the room experi-
ences a few swings. Then, the c-parameters can be used for analy-
sis. In this example, the parameters listed in Table 3 are arbitrarily
selected as they are found by piecewise correlations at t ¼ 4479 s
of the experiment shown in Fig. 3. Nevertheless, in an automatic
system, the c-parameters can be updated at every swing, therefore
providing more accurate parameters for the upcoming conditions.

The maximum allowable temperature deviation from the
desired level is assumed to be 1:6 �C (step 2). The maximum num-
ber of compressor starts per hour is assumed to be 16 (step 3). The
next step is to find the proper tI and tD for keeping the mean tem-
perature at the desired level and nc equal to the maximum allow-
able number of compressor starts per hour (step 4). Fig. 6 shows nc

versus TH . For every value of TH in Fig. 6, the corresponding TL is
calculated by solving Eq. (13) subject to Tmc equal to the desired
temperature. Therefore, for every TH , if TL is correctly selected,
Tmc is equal to the desired temperature and nc can be found from
Fig. 6. The minimum allowable TH corresponding to nc ¼ 16 is thus
estimated as 27:4 �C (step 5). On the other hand, the maximum
allowable TH is 27:6 �C, due to the decided maximum temperature
deviation (step 6).

At this stage, the window of selection for TH is found, i.e.,
27:4 �C < TH < 27:6 �C. Within this range, the number of compres-
sor starts per hour and the temperature deviation are both less
Table 3
c-parameters calculated at t ¼ 4479 s of the experiment.

Parameter Value Parameter Value

c1I 29:9 �C c1D 22:3 �C
c2I �5:5 �C c2D 5:6 �C
c3I 126 s c3D 128 s
than their respective maximum allowable values. By proper selec-
tion of TL for every TH , the resulting mean temperature will also be
equal to its desired value. Hence, all the constraints of the opti-
mization problem are satisfied. The last stage of the design is to
select a TH value that minimizes Pmc. Fig. 7 shows the plot of the
average power Pmc versus TH , given that TL is properly selected
for every TH so that Tmc is equal to the desired temperature of
26 �C. As observed in Fig. 7, the power consumption decreases with
increasing TH for this experiment. Therefore, the most
energy-efficient value of TH within its allowable range is
TH ¼ 27:6 �C (step 7). By solving Eq. (13), the low set point is fur-
ther found to be TL ¼ 24:1 �C, as also determined from Fig. 7 (step
8). The average power consumption can thus be calculated using
Eq. (14) or Fig. 7 as Pmc ¼ 265:3 W (step 9). The number of com-
pressor starts per hour is also calculated using Eq. (15) or Fig. 6
as nc ¼ 14 starts per hour (step 10).
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Fig. 7 shows that by selecting different set point pairs, the aver-
age power consumption for providing the same average tempera-
ture can vary from Pmc ¼ 275 W down to Pmc ¼ 258 W. Thus, a
proper selection of asymmetric set points can save 6.6% of the
overall energy. The slight decrease in the effective power con-
sumption for higher hysteresis is because when the cycle is com-
manded to start at a higher TH value, the cooling load provided
to the chamber slightly increases. Hence, the higher temperature
gradient between the chamber air and the cold air leads to a higher
cooling effect for the same compressor power. Therefore, less over-
all energy is consumed by the cycle for the same mean
temperature.

It should be noted that symmetric selection of hysteresis, as is
done in Fig. 4, yields to different results compared with the asym-
metric selection of set points according to the present model. Fig. 4
shows that if the set points are symmetrically selected around the
desired temperature, larger hysteresis results in higher energy con-
sumption. However, the mean temperature may not be equal to
the desired value. As a result, more energy may be consumed to
maintain an undesired average temperature. However, by selecting
the set points by the present model, the average temperature is
more accurately maintained at the desired level, and higher hys-
teresis yields to slightly less energy consumption.

The proposed design strategy forms an analytical tool for proper
selection of the set points in any HVAC–R system equipped with an
on/off controller. The prerequisite to using this method is to know
the correlation parameters, an example of which is reported in
Table 3. In order to find those parameters, it is necessary to have
the temperature data for at least one temperature swing. Thus,
the proposed method is readily applicable to existing systems.
On the other hand, for new systems where the temperature data
may not available, the proposed method can still be used by know-
ing the physical parameters of Eq. (1). Similar to white-box
approaches, the designer can collect the physical and geometrical
parameters of the governing equation. The proposed design strat-
egy can then be used to reformulate the heat balance equation
and utilize the resulting c-parameters for energy-efficient selection
of on/off set points.

4. Conclusions

Many HVAC–R systems are equipped with on/off controllers. A
high and a low set point are selected above and below the desired
temperature to command the refrigeration cycle on or off. A design
strategy is proposed in this study for energy-efficient selection of
the set points. The objective is to select the set points for minimiz-
ing the overall energy consumption subject to the following
constraints:

� Minimum error between the average temperature and the
desired temperature.
� Minimum temperature deviation from the desired temperature.
� Minimum number of compressor starts per hour.

Following a gray-box approach, exponential correlations are fit-
ted to raw temperature measurements. Based on the heat balance
equation, the design strategy is formulated to provide analytical
estimations of all the corresponding quantities. The model is vali-
dated by estimating the mean temperature and the average power
consumption with maximum relative errors of 1% and 16%, respec-
tively. It is experimentally shown that the set points can affect the
overall energy consumption by as much as 49%, if they are sym-
metrically selected around the desired temperature. It is further
shown that while maintaining the exact desired temperature, there
is an opportunity to increase the energy efficiency by 6.6% using
different high and low hysteresis values.
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